Brand Brand name of the company that manufactures the device. | Xiaomi |
Model Model name of the device. | MIX Flip |
Width Information about the width, i.e. the horizontal side of the device when it is used in its standard orientation. | 300 mm (millimeters) 30 cm (centimeters) 0.984 ft (feet) 11.811 in (inches) |
Height Information about the height, i.e. the vertical side of the device when it is used in its standard orientation. | 190 mm (millimeters) 19 cm (centimeters) 0.623 ft (feet) 7.48 in (inches) |
Thickness Information about the thickness/depth of the device in different measurement units. | 7.8 mm (millimeters) 0.78 cm (centimeters) 0.026 ft (feet) 0.307 in (inches) |
Weight Information about the weight of the device in different measurement units. | 192 g (grams) 0.42 lbs (pounds) 6.77 oz (ounces) |
Volume Estimated volume of the device, calculated from the dimensions provided by the manufacturer. Applies for devices in the form of a rectangular parallelepiped. | 444.6 cm³ (cubic centimeters) 27 in³ (cubic inches) |
Colors Information about the colors, in which the device is available in the market. | Black |
Body materials Materials used in the fabrication of the device's body. | Aluminium alloy |
CDMA CDMA (Code-Division Multiple Access) is a channel access method for communications within mobile networks. Compared to other 2G and 2.5G standards like GSM and TDMA, it provides increased data transfer speeds and allows more subscribers to connect simultaneously to the network. | CDMA 800 MHz (BC0) |
UMTS UMTS stands for Universal Mobile Telecommunications System. Based on the GSM standard, it is deemed as a 3G mobile network standard. It has been developed by the 3GPP and its major advantage is the provision of greater bandwidth and spectral efficiency, due to the W-CDMA technology. | UМТS 800 МНz (В19) UМТS 850 МНz (В5) UМТS 900 МНz (В8) UМТS 1700 МНz (В4) UМТS 1900 МНz (В2) UМТS 2100 МНz (В1) |
LTE LTE is deemed to be the fourth generation (4G) of mobile communications technology. It has been developed by the 3GPP based on the GSM/EDGE and UMTS/HSPA technologies in order to increase the speed and capacity of wireless data networks. A further development of the technology is called LTE Advanced. | LТЕ-FDD 700 МНz (В12) LТЕ-FDD 700 МНz (В13) LТЕ-FDD 700 МНz (В17) LТЕ-FDD 700 МНz (В28) LТЕ-FDD 800 МНz (В20) LТЕ-FDD 850 МНz (В5) LТЕ-FDD 900 МНz (В8) LТЕ-FDD 1700 МНz (В4) LТЕ-FDD 1700 МНz (В66) LТЕ-FDD 1800 МНz (В3) LТЕ-FDD 1900 МНz (В2) LТЕ-FDD 1900 МНz (В25) LТЕ-FDD 2100 МНz (В1) LТЕ-FDD 2600 МНz (В7) LТЕ-ТDD 1900 МНz (В39) LТЕ-ТDD 2000 МНz (В34) LТЕ-ТDD 2300 МНz (В40) LТЕ-ТDD 2600 МНz (В38) |
5G NR The 5G (fifth generation) mobile networks use the new radio access technology (RAT) developed by 3GPP, dubbed 5G NR and deemed as the global standard for the air interface of 5G networks. 5G NR operates in two frequency ranges - FR1 (sub-6 GHz) and FR2 (above 24 GHz). In the FR1 frequency range, the 5G mobile networks use a number of bands, some of which are traditionally used by previous standards. The FR2 provides shorter range but higher available bandwidth than bands in the FR1. | 5G-FDD 700 MHz (n28) 5G-FDD 800 MHz (n20) 5G-FDD 850 MHz (n5) 5G-FDD 900 MHz (n8) 5G-FDD 1700 MHz (n66) 5G-FDD 1800 MHz (n3) 5G-FDD 1900 MHz (n2) 5G-FDD 2100 MHz (n1) 5G-TDD 2300 MHz (n40) 5G-TDD 2500 MHz (n41) 5G-FDD 2600 MHz (n7) 5G-TDD 2600 MHz (n38) 5G-TDD 3500 MHz (n78) 5G-TDD 3700 MHz (n77) |
Mobile network technologies There are several network technologies that enhance the performance of mobile networks mainly by increased data bandwidth. Information about the communication technologies supported by the device and their respective uplink and downlink bandwidth. | UМТS GРRS LТЕ |
Operating system (OS) Information about the operating system used by the device as well as its version. | Хiаоmi НyреrОS (Аndrоid 14) |
SoC The SoC integrates different hardware components such as the CPU, GPU, memory, peripherals, interfaces, etc., as well as software for their functioning. | Ιntеl Аtоm х5-Ζ8500 |
Process technology Information about the process technology used in manufacturing the chip. The value in nanometers represents half the distance between elements that make up the CPU. | 14 nm (nanometers) |
CPU CPU is the Central Processing Unit or the processor of a mobile device. Its main function is to interpret and execute instructions contained in software applications. | 1х 3.3 GНz АRМ Соrtех-Х4, 5х 3.2 GНz АRМ Соrtех-А720, 2х 2.3 GНz АRМ Соrtех-А520 |
CPU bits The CPU bits are determined by the bit-size of the processor registers, address buses and data buses. 64-bit CPUs provide better performance than 32-bit ones, which on their part perform better than 16-bit processors. | 64 bit |
Instruction set The instruction set architecture (ISA) is a set of commands used by the software to manage the CPU's work. Information about the set of instructions the processor can execute. | ARMv9-A |
Level 1 cache memory (L1) The cache memory is used by the processor in order to shorten the time needed to access data and instructions that a frequently used. The L1 (level 1) cache memory has a small volume, but operates faster than the RAM and the rest cache memory levels. If the processor does not find the data needed in L1, it continues to look for it in the L2 cache memory. In some processors the search in L1 and L2 is simultaneous. | 16 KB + 16 KB (kilobytes) |
CPU cores A CPU core is the processor unit, which executes software instructions. Presently, besides single-core processors, there are dual-core, quad-core, hexa-core and so on multi-core processors. They increase the performance of the device allowing the execution of multiple instructions in parallel. | 4 |
CPU frequency The frequency of the processor describes its clock rate in cycles per second. It is measured in Megahertz (MHz) or Gigahertz (GHz). | 3300 MHz (megahertz) |
GPU GPU is a graphical processing unit, which handles computation for 2D/3D graphics applications. In mobile devices GPU is usually utilized by games, UI, video playback, etc. GPU can also perform computation in applications traditionally handled by the CPU. | Qualcomm Adreno 750 |
GPU frequency The frequency is the clock rate of the graphic processor (GPU), which is measured in Megahertz (MHz) or Gigahertz (GHz). | 600 MHz (megahertz) |
RAM capacity RAM (Random-Access Memory) is used by the operating system and all installed applications. Data in the RAM is lost after the device is turned off or restarted. | 4 GB (gigabytes) |
RAM type Information about the type of RAM used by the device. | LPDDR4 |
RAM frequency RAM frequency relates directly to the rate of reading/writing from/in the RAM memory. | 4399 MHz (megahertz) |
Storage Information about the capacity of the built-in storage of the device. Sometimes one and the same model may is offered in variants with different internal storage capacity. | 64 GB (gigabytes) |
UFS 2.1 |
Type/technology One of the main characteristics of the display is its type/technology, on which depends its performance. | IPS |
Diagonal size In mobile devices display size is represented by the length of its diagonal measured in inches. | 11.6 in (inches) 294.64 mm (millimeters) 29.46 cm (centimeters) |
Width Approximate width of the display | 4.76 in (inches) 120.91 mm (millimeters) 12.09 cm (centimeters) |
Height Approximate height of the display | 10.58 in (inches) 268.69 mm (millimeters) 26.87 cm (centimeters) |
Aspect ratio The ratio between the long and the short side of the display | 2.222:1 |
Resolution The display resolution shows the number of pixels on the horizontal and vertical side of the screen. The higher the resolution is, the greater the detail of the displayed content. | 1080 x 2400 pixels |
Pixel density Information about the number of pixels per centimeter (ppcm) or per inch (ppi) of the display. The higher the pixel density, the more detailed and clearer is the information displayed on the screen. | 227 ppi (pixels per inch) 89 ppcm (pixels per centimeter) |
Color depth The color depth of the display is also known as bit depth. It shows the number of bits used for the color components of one pixel. Information about the maximum number of colors the screen can display. | 24 bit 16777216 colors |
Display area The estimated percentage of the screen area from the device's front area. | 57.18 % (percent) |
Other features Information about other functions and features of the display. | Capacitive Multi-touch Scratch resistant |
Sensors Sensors vary in type and purpose. They increase the overall functionality of the device, in which they are integrated. | Proximity Light Accelerometer Compass Gyroscope Barometer Pedometer Geomagnetic Fingerprint Hall |
Sensor format The optical format of an image sensor is an indication of its shape and size. It is usually expressed in inches. | 1/1.49" |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/1.7 |
Image resolution One of the main characteristics of the cameras is their image resolution. It states the number of pixels on the horizontal and vertical dimensions of the image, which can also be shown in megapixels that indicate the approximate number of pixels in millions. | 2592 x 6144 pixels 15.93 MP (megapixels) |
Features Information about additional software and hardware features of the rear camera which improve its overall performance. | Face detection Scene mode |
Leica Professional Optical Lens Fully coated lens Pixel size - 2.0 μm (4-in-1 pixel binning) Secondary rear camera - 50 MP (telephoto) Aperture size - f/2.0 (#2) Focal length equivalent - 47 mm (#2) PDAF (#2) |
Sensor model Information about the manufacturer and model of the image sensor used by this camera of the device. | OmniVision OV32B40 |
Aperture The aperture (f-stop number) indicates the size of the lens diaphragm opening, which controls the amount of light reaching the image sensor. The lower the f-stop number, the larger the diaphragm opening is, hence, the more light reaches the sensor. Usually, the f-stop number specified is the one that corresponds to the maximum possible diaphragm opening. | f/2 |
Image resolution Information about the number of pixels on the horizontal and vertical dimensions of the photos taken by the front camera, indicated in megapixels as well. | 1600 x 1200 pixels 1.92 MP (megapixels) |
Speaker The loudspeaker is a device, which reproduces various sounds such as ring tones, alarms, music, voice calls, etc. Information about the type of speakers the device uses. | Loudspeaker Stereo speakers |
Radio Information whether the device has an FM radio receiver or not. | No |
Tracking/Positioning The tracking/positioning service is provided by various satellite navigation systems, which track the autonomous geo-spatial positioning of the device that supports them. The most common satellite navigation systems are the GPS and the GLONASS. There are also non-satellite technologies for locating mobile devices such as the Enhanced Observed Time Difference, Enhanced 911, GSM Cell ID. | GРS А-GРS GLОΝАSS |
Wi-Fi Wi-Fi communication between devices is realized via the IEEE 802.11 standards. Some devices have the possibility to serve as Wi-Fi Hotspots by providing internet access for other nearby devices. Wi-Fi Direct (Wi-Fi P2P) is another useful standard that allows devices to communicate with each other without the need for wireless access point (WAP). | 802.11b (IEEE 802.11b-1999) 802.11g (IEEE 802.11g-2003) 802.11а 802.11ас 5GНz |
Version The technology has several versions, which improve the connection speed, range, connectivity and discoverability of the devices. Information about the Bluetooth version of the device. | 4.1 |
Features Bluetooth uses various profiles and protocols related to faster exchange of data, energy saving, better device discoverability, etc. Some of those supported by the device are listed here. | A2DP (Advanced Audio Distribution Profile) |
Connector type There are several USB connector types: the Standard one, the Mini and Micro connectors, On-The-Go connectors, etc. Type of the USB connector used by the device. | Standard USB |
Version There are several versions of the Universal Serial Bus (USB) standard: USB 1.0 (1996), the USB 2.0 (2000), the USB 3.0 (2008), etc. With each following version the rate of data transfer is increased. | 2.0 |
Features Тhe USB interface in mobile devices may be used for different purposes such as battery charging, using the device as a mass storage, host, etc. | Charging Mass storage On-The-Go |
HDMI This audio/video interface is used in transferring uncompressed video and audio data between HDMI-compatible devices. Often mobile devices are connected to an HDMI device via an MHL adapter. | Micro HDMI (Type D) |
Headphone jack Information whether the device is equipped with a 3.5 mm audio jack. | Yes |
Connectivity Information about some of the most widely used connectivity technologies supported by the device. | Computer sync OTA sync Tethering |
Browser Information about some of the features and standards supported by the browser of the device. | HTML HTML5 CSS 3 |
Audio file formats/codecs List of some of the most common audio file formats and codecs supported standardly by the device. | AAC (Advanced Audio Coding) AMR / AMR-NB / GSM-AMR (Adaptive Multi-Rate, .amr, .3ga) eAAC+ / aacPlus v2 / HE-AAC v2 FLAC (Free Lossless Audio Codec, .flac) M4A (MPEG-4 Audio, .m4a) MIDI MP3 (MPEG-2 Audio Layer II, .mp3) OGG (.ogg, .ogv, .oga, .ogx, .spx, .opus) WMA (Windows Media Audio, .wma) WAV (Waveform Audio File Format, .wav, .wave) |
Video file formats/codecs List of some of the most common video file formats and codecs supported standardly by the device. | 3GPP (3rd Generation Partnership Project, .3gp) AVI (Audio Video Interleaved, .avi) MPEG-4 Xvid |
Capacity The capacity of a battery shows the maximum charge, which it can store, measured in mili-Ampere hours. | 8500 mAh (milliampere-hours) |
Type The battery type is determined by its structure and more specifically, by the chemicals used in it. There are different battery types and some of the most commonly used in mobile devices are the lithium-ion (Li-Ion) and the lithium-ion polymer battery (Li-Polymer). | Li-Polymer |
Charger output power Information about the electric current (amperes) and voltage (volts) the charger outputs. The higher power output allows faster charging. | 5 V (volts) / 2 A (amps) |
Features Information about some additional features of the device's battery. | Non-removable |
Xiaomi Surge |
Additional features Information about other features of the device. | Docking connector Stylus - optional |